Measurement of the $^{15}N(\alpha,\gamma)^{19}F$ reaction at the Felsenkeller laboratory

A. Skruch¹
¹Faculty of Physics, University of Warsaw, Warsaw, Poland

Helium burning is a crucial phase in stellar evolution, playing a key role in the synthesis of the elements. Precise measurements of nuclear reactions at the burning energies are important to constrain stellar models and nucleosynthesis pathways. We report on the 15 N(α , γ) 19 F reaction which is one of the main contributors to the 19 F production in stars, still yet not understood. At temperatures relevant in the stellar environment the reaction can proceed trough several resonances in the energy range $E_{\alpha}^{\rm CM}=364-1497$ keV. This contribution focus on the investigation of the $E_{\alpha}^{\rm CM}=1323$ keV resonance for which available literature data on its energy and alpha width is showing considerable discrepancies [1, 2].

The $^{15}{\rm N}(\alpha,\,\gamma)^{19}{\rm F}$ measurement was performed at Felsenkeller shallow-underground laboratory (Dresden, Germany). The experiment was carried out using the well collimated α beam provided by the 5 MV Pelletron accelerator into solid Ta¹⁵N targets. The γ ray emitted from the reaction were measured with an array of 21 High-Purity Germanium (HPGe) detectors arranged around the target. The experimental campaign focused on the study of the high-energy resonances and for the first time angular distribution measurements.

Details on experimental setup, data taking and preliminary results on the $E_{\alpha}^{\rm CM}=1323$ keV resonance, as well as future plans will be presented.

- [1] A. Di Leva et al., Physical Review C 95.4 (2017): 045803.
- [2] R. Fang et al., Physical Review C 110.2 (2024): 025806.